程瑜
安科瑞电气股份有限公司 上海嘉定 201801
摘要:针新型电力系统是新型能源体系的重要载体,具备清洁低碳、安全可控、灵活高效、智能友好、开放互动五大特征。储能技术在新型电力系统构建中扮演着bukehuoque的角色,是实现五大特征的重要引擎,也是保障电力持续可靠供应、保障电网安全稳定运行、促进新能源高效消纳(简称“两保一促”)的基础支柱。
关键词:电力系统;储能技术;新能源
0.引言
随着新型电力系统已经正式迈入“路径设计”及“方法论实施”的关键阶段。2023年7月11日,总书记主持召开全面深化改革委员会二次会议,审议通过了《关于深化电力体制改革加快构建新型电力系统的指导意见》,强调要科学合理设计新型电力系统建设路径。同日《中国电力报》刊发电网有限公司辛保安董事长署名文章“新型电力系统构建方法论研究”,阐释新型电力系统构建中的关键难点。可以肯定的是,在新型电力系统建设的不同阶段,储能技术都将持续发挥重要作用,非常有必要在顶层设计的基础上,完善储能系统的理论方法,促进储能数字化智能化(简称数智化)技术创新,服务好支撑电源侧高比例可再生能源广泛接入、电网侧资源安全高效灵活配置、负荷侧多元负荷需求的战略目标。
1.开发背景
当基于上述背景,《供用电》邀请我们共同策划了“新型电力系统下的储能技术”专题,组织了5篇技术论文。面向数智化发展的电化学储能电站创新应用新需求与新挑战,中国电力科学研究院有限公司李相俊等在分析我国电化学储能技术发展现状的基础上,提出了储能电池、储能变流器、储能电站的数智化应用新思路与新方法,并展望了电化学储能电站数字化智能化应用前景;针对愈加复杂的微电网黑启动问题,北京信息科技大学刘佳豪等综合考虑储能荷电状态及分布式电源出力不确定性的影响,提出了一种基于分布式电源黑启动能力在线评估的微电网动态黑启动策略,该策略可避免电源实际出力小于负荷需求而导致黑启动失败,也可减少电源实际出力过剩而导致的能源浪费;针对电池储能电站中锂离子电池的安全风险与优化运行问题,中国电力科学研究院有限公司李焓宁等兼顾电池储能单元的荷电状态、健康状态和安全状态,提出了一种电池储能电站能量管理策略,该策略保证了储能系统的安全运行,具有良好的荷电状态平衡效果,且电池储能电站能够更好地参与电力系统调度;针对改善风力发电出力特
性的问题,国网福建省电力有限公司电力科学研究院陈金玉等提出了一种面向功率平抑的风-储系统鲁棒模型预测控制技术,相比于其他技术,所提鲁棒模型预测控制策略对风电波动的平抑效果更佳,且对不同水平的风电预测误差具有更强的适应性;针对电压暂降防治问题,国网湖北省电力有限公司电力科学研究院刘曼佳等提出了一种基于构网型储能变流器的电压暂降分级治理策略,该策略能够有效支撑并网点电压,保证了工业园区重要敏感负荷的稳定运行。
2.安科瑞Acrel-2000ES储能能量管理系统解决方案2.1概述
安科瑞Acrel-2000ES储能能量管理系统具有完善的储能监控与管理功能,涵盖了储能系统设备(PCS、BMS、电表、消防、空调等)的详细信息,实现了数据采集、数据处理、数据存储、数据查询与分析、可视监控、报警管理、统计报表等功能。在gaoji应用上支持能量调度,具备计划曲线、削峰填谷、需量控制、备用电源等控制功能。系统对电池组性能进行实时监测及历史数据分析、根据分析结果采用智
能化的分配策略对电池组进行充放电控制,优化了电池性能,提高电池寿命。系统支持Windows操作系统,数据库采用SQLServer。本系统既可以用于储能一体柜,也可以用于储能集装箱,是专门用于储能设备管理的一套软件系统平台。
2.2适用场合
系统可应用于城市、高速公路、工业园区、工商业区、居民区、智能建筑、海岛、无电地区可再生能源系统监控和能量管理需求。
2.2.1工商业储能四大应用场景
1)工厂与商场:工厂与商场用电习惯明显,安装储能以进行削峰填谷、需量管理,能够降低用电成本,并充当后备电源应急;
2)光储充电站:光伏自发自用、供给电动车充电站能源,储能平抑大功率充电站对于电网的冲击;
3)微电网:微电网具备可并网或离网运行的灵活性,以工业园区微网、海岛微网、偏远地区微网为主,储能起到平衡发电供应与用电负荷的作用;
4)新型应用场景:工商业储能积极探索融合发展新场景,已出现在数据、5G基站、换电重卡、港口岸电等众多应用场景。
2.3系统结构
2.4系统功能
2.4.1实时监测
微电网能量管理系统人机界面友好,应能够以系统一次电气图的形式直观显示各电气回路的运行状态,实时监测各回路电压、电流、功率、功率因数等电参数信息,动态监视各回路断路器、隔离开关等合、分闸状态及有关故障、告警等信号。其中,各子系统回路电参量主要有:三相电流、三相电压、总有功功率、总无功功率、总功率因数、频率和正向有功电能累计值;状态参数主要有:开关状态、断路器故障脱扣告警等。
系统应可以对分布式电源、储能系统进行发电管理,使管理人员实时掌握发电单元的出力信息、收益信息、储能荷电状态及发电单元与储能单元运行功率设置等。
系统应可以对储能系统进行状态管理,能够根据储能系统的荷电状态进行及时告警,并支持定期的电池维护。
微电网能量管理系统的监控系统界面包括系统主界面,包含微电网光伏、风电、储能、充电桩及总体负荷组成情况,包括收益信息、天气信息、节能减排信息、功率信息、电量信息、电压电流情况等。根据不同的需求,也可将充电,储能及光伏系统信息进行显示。
图2系统主界面
子界面主要包括系统主接线图、光伏信息、风电信息、储能信息、充电桩信息、通讯状况及一些统计列表等。
2.4.2光伏界面图3光伏系统界面
本界面用来展示对光伏系统信息,主要包括逆变器直流侧、交流侧运行状态监测及报警、逆变器及电站发电量统计及分析、并网柜电力监测及发电量统计、电站发电量年有效利用小时数统计、发电收益统计、碳减排统计、辐照度/风力/环境温湿度监测、发电功率模拟及效率分析;同时对系统的总功率、电压电流及各个逆变器的运行数据进行展示。
2.4.3储能界面图4储能系统界面
本界面主要用来展示本系统的储能装机容量、储能当前充放电量、收益、SOC变化曲线以及电量变化曲线。
图5储能系统PCS参数设置界面
本界面主要用来展示对PCS的参数进行设置,包括开关机、运行模式、功率设定以及电压、电流的限值。
图6储能系统BMS参数设置界面
本界面用来展示对BMS的参数进行设置,主要包括电芯电压、温度保护限值、电池组电压、电流、温度限值等。
图7储能系统PCS电网侧数据界面
本界面用来展示对PCS电网侧数据,主要包括相电压、电流、功率、频率、功率因数等。
图8储能系统PCS交流侧数据界面
本界面用来展示对PCS交流侧数据,主要包括相电压、电流、功率、频率、功率因数、温度值等。同时针对交流侧的异常信息进行告警。
图9储能系统PCS直流侧数据界面
本界面用来展示对PCS直流侧数据,主要包括电压、电流、功率、电量等。同时针对直流侧的异常信息进行告警。
图10储能系统PCS状态界面
本界面用来展示对PCS状态信息,主要包括通讯状态、运行状态、STS运行状态及STS故障告警等。
图11储能电池状态界面
本界面用来展示对BMS状态信息,主要包括储能电池的运行状态、系统信息、数据信息以及告警信息等,同时展示当前储能电池的SOC信息。
图12储能电池簇运行数据界面
本界面用来展示对电池簇信息,主要包括储能各模组的电芯电压与温度,并展示当前电芯大、小电压、温度值及所对应的位置。
2.4.4风电界面图13风电系统界面
本界面用来展示对风电系统信息,主要包括逆变控制一体机直流侧、交流侧运行状态监测及报警、逆变器及电站发电量统计及分析、电站发电量年有效利用小时数统计、发电收益统计、碳减排统计、风速/风力/环境温湿度监测、发电功率模拟及效率分析;同时对系统的总功率、电压电流及各个逆变器的运行数据进行展示。
2.4.5充电桩界面图14充电桩界面
本界面用来展示对充电桩系统信息,主要包括充电桩用电总功率、交直流充电桩的功率、电量、电量费用,变化曲线、各个充电桩的运行数据等。
2.4.6视频监控界面图15微电网视频监控界面
本界面主要展示系统所接入的视频画面,且通过不同的配置,实现预览、回放、管理与控制等。
2.4.7发电预测
系统应可以通过历史发电数据、实测数据、未来天气预测数据,对分布式发电进行短期、超短期发电功率预测,并展示合格率及误差分析。根据功率预测可进行人工输入或者自动生成发电计划,便于用户对该系统新能源发电的集中管控。
图16光伏预测界面
2.4.8策略配置系统应可以根据发电数据、储能系统容量、负荷需求及分时电价信息,进行系统运行模式的设置及不同控制策略配置。如削峰填谷、周期计划、需量控制、有序充电、动态扩容等。
图17策略配置界面
2.4.9运行报表应能查询各子系统、回路或设备指定时间的运行参数,报表中显示电参量信息应包括:各相电流、三相电压、总功率因数、总有功功率、总无功功率、正向有功电能等。
图18运行报表
2.4.10实时报警
应具有实时报警功能,系统能够对各子系统中的逆变器、双向变流器的启动和关闭等遥信变位,及设备内部的保护动作或事故跳闸时应能发出告警,应能实时显示告警事件或跳闸事件,包括保护事件名称、保护动作时刻;并应能以弹窗、声音、短信和电话等形式通知相关人员。
图19实时告警
2.4.11历史事件查询应能够对遥信变位,保护动作、事故跳闸,以及电压、电流、功率、功率因数、电芯温度(锂离子电池)、压力(液流电池)、光照、风速、气压越限等事件记录进行存储和管理,方便用户对系统事件和报警进行历史追溯,查询统计、事故分析。
图20历史事件查询
2.4.12电能质量监测
应可以对整个微电网系统的电能质量包括稳态状态和暂态状态进行持续监测,使管理人员实时掌握供电系统电能质量情况,以便及时发现和消除供电不稳定因素。
1)在供电系统主界面上应能实时显示各电能质量监测点的监测装置通信状态、各监测点的A/B/C相电压总畸变率、三相电压不平衡度百分百和正序/负序/零序电压值、三相电流不平衡度百分百和正序/负序/零序电流值;
2)谐波分析功能:系统应能实时显示A/B/C三相电压总谐波畸变率、A/B/C三相电流总谐波畸变率、奇次谐波电压总畸变率、奇次谐波电流总畸变率、偶次谐波电压总畸变率、偶次谐波电流总畸变率;应能以柱状图展示2-63次谐波电压含有率、2-63次谐波电压含有率、0.5~63.5次间谐波电压含有率、0.5~63.5次间谐波电流含有率;
3)电压波动与闪变:系统应能显示A/B/C三相电压波动值、A/B/C三相电压短闪变值、A/B/C三相电压长闪变值;应能提供A/B/C三相电压波动曲线、短闪变曲线和长闪变曲线;应能显示电压偏差与频率偏差;
4)功率与电能计量:系统应能显示A/B/C三相有功功率、无功功率和视在功率;应能显示三相总有功功率、总无功功率、总视在功率和总功率因素;应能提供有功负荷曲线,包括日有功负荷曲线(折线型)和年有功负荷曲线(折线型);
5)电压暂态监测:在电能质量暂态事件如电压暂升、电压暂降、短时中断发生时,系统应能产生告警,事件能以弹窗、闪烁、声音、短信、电话等形式通知相关人员;系统应能查看相应暂态事件发生前后的波形。
6)电能质量数据统计:系统应能显示1min统计整2h存储的统计数据,包括均值、大值、小值、95%概率值、方均根值。
7)事件记录查看功能:事件记录应包含事件名称、状态(动作或返回)、波形号、越限值、故障持续时间、事件发生的时间。
图21微电网系统电能质量界面
2.4.13遥控功能应可以对整个微电网系统范围内的设备进行远程遥控操作。系统维护人员可以通过管理系统的主界面完成遥控操作,并遵循遥控预置、遥控返校、遥控执行的操作顺序,可以及时执行调度系统或站内相应的操作命令。
图22遥控功能
2.4.14曲线查询应可在曲线查询界面,可以直接查看各电参量曲线,包括三相电流、三相电压、有功功率、无功功率、功率因数、SOC、SOH、充放电量变化等曲线。
图23曲线查询
2.4.15统计报表具备定时抄表汇总统计功能,用户可以自由查询自系统正常运行以来任意时间段内各配电节点的用电情况,即该节点进线用电量与各分支回路消耗电量的统计分析报表。对微电网与外部系统间电能量交换进行统计分析;对系统运行的节能、收益等分析;具备对微电网供电可靠性分析,包括年停电时间、年停电次数等分析;具备对并网型微电网的并网点进行电能质量分析。
图24统计报表
2.4.16网络拓扑图
系统支持实时监视接入系统的各设备的通信状态,能够完整的显示整个系统网络结构;可在线诊断设备通信状态,发生网络异常时能自动在界面上显示故障设备或元件及其故障部位。
图25微电网系统拓扑界面
本界面主要展示微电网系统拓扑,包括系统的组成内容、电网连接方式、断路器、表计等信息。
2.4.17通信管理可以对整个微电网系统范围内的设备通信情况进行管理、控制、数据的实时监测。系统维护人员可以通过管理系统的主程序右键打开通信管理程序,然后选择通信控制启动所有端口或某个端口,快速查看某设备的通信和数据情况。通信应支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信规约。
图26通信管理
2.4.18用户权限管理应具备设置用户权限管理功能。通过用户权限管理能够防止未经授权的操作(如遥控操作,运行参数修改等)。可以定义不同级别用户的登录名、密码及操作权限,为系统运行、维护、管理提供可靠的安全保障。
图27用户权限
2.4.19故障录波应可以在系统发生故障时,自动准确地记录故障前、后过程的各相关电气量的变化情况,通过对这些电气量的分析、比较,对分析处理事故、判断保护是否正确动作、提高电力系统安全运行水平有着重要作用。其中故障录波共可记录16条,每条录波可触发6段录波,每次录波可记录故障前8个周波、故障后4个周波波形,总录波时间共计46s。每个采样点录波至少包含12个模拟量、10个开关量波形。
图28故障录波
2.4.20事故追忆可以自动记录事故时刻前后一段时间的所有实时扫描数据,包括开关位置、保护动作状态、遥测量等,形成事故分析的数据基础。
用户可自定义事故追忆的启动事件,当每个事件发生时,存储事故前10个扫描周期及事故后10个扫描周期的有关点数据。启动事件和监视的数据点可由用户指定和随意修改。
图29事故追忆
3.系统硬件配置清单
4.结语
,本专题重点围绕储能数字化智能化应用、建模仿真、运行控制、黑启动等议题,拟通过理论研究、方法推广、产业协同等方式,把握储能系统功能定位和发展趋势,为储能参与支撑新型电力系统“两保一促”等提供一定应用思路。展望未来,为促进储能技术的健康、有序发展,不仅可以通过深刻把握新型电力系统的构建逻辑,开展储能发展的方法论研究;还应通过推动储能的技术创新,深化新型电力系统落地与实践。建议持续关注新型电力系统中的储能规划评估、集成运行及新型装备技术发展,并在多能互补系统、超大规模储能电站、多类型储能联合应用、源网荷储协同优化等领域取得新的突破。
参考文献
[1]李相俊.浅淡新型电力系统下的储能技术[J].
[2]安科瑞企业微电网设计与应用手册.2022.05版.
- 浅谈某办公建筑的建筑能耗管理系统设计及分析 2024-11-21
- 浅谈分布式新能源发电中的储能系统能量管理分析 2024-11-21
- Acrel-2000E配电室综合监控系统在 “三大工程”中的应用 2024-11-21
- 医院消防设备电源实时监控系统解决方案 2024-11-21
- 学校电能质量治理解决方案--实现谐波治理和无功补偿 2024-11-21
- 商业中心智慧消防平台解决方案--实现科学预警火灾、网格化管理、落实多元责任监管 2024-11-21
- 工厂电力监控解决方案 2024-11-21
- 商业中心电气火灾监控系统解决方案 2024-11-21
- 医院消防设备电源监控系统解决方案 2024-11-21
- 数据中心动环监控系统解决方案 2024-11-21
- AcrelCloud-1000变电所运维云平台 2024-11-21
- 智慧园区配电房综合监控系统解决方案 2024-11-21
- 汽车制造智慧消防平台解决方案 2024-11-21
- 学校充电桩系统解决方案 2024-11-21
- 商业中心预付费系统解决方案 2024-11-21
联系方式
- 联系电话:未提供
- 联系人:程瑜
- 手 机:18702112087
- 微 信:18702112087