摘要:文章基于南方某市的电动汽车充电数据,得出各类型电动汽车在不同日期类型的充电开始时间、充电电量、充电功率的分布规律。采用蒙特卡洛算法模拟计算了该市2021年各类型电动汽车工作日与休息日的充电负荷情况,结果表明,电动私家车在休息日的午间和凌晨充电负荷要高于工作日;该市电动出租车在工作日与休息日的充电负荷占比分别60.42%、5&55%,在三类型车中始终*大;电动私家车工作日与休息日充电负荷曲线有较大差异,电网总负荷会在19:00达到*高峰。验证了电动汽车的大规模引入会增加电网的峰值和峰谷差,同时将充电行为数据拟合为公式,旨在为未来的电网扩容建设和对电动汽车的有序充电控制提供帮助。
关键词:电动汽车;充电行为分析;负荷预测
0引言
随着环境的恶化和化石能源短缺现象的加剧,电动汽车以其相对低廉的价格、契合绿色出行的理念、消纳间歇性可再生能源电力等特点,近些年在世界范围内都得到了较快的发展。而大规模电动汽车并入电网给电网的安全带来了严重的威胁。即随着电动汽车数量的提高,会给电网负荷带来了巨大的冲击"列。因此,对电动汽车的充电负荷趋势进行预测,对于电网及充电桩后续的规划建设,以及采用何种方式来缓解大规模电动汽车充电过程对电网带来的冲击,都具有重要的研究价值和现实意义。针对电动汽车充电负荷预测可以分为从空间角度和时间角度进行预测。文献研究电动汽车在空间约束下的出行特性,采用交通起止点法和蒙特卡洛算法完成对电动汽车充电负荷的时空预测。文献针对电动汽车在居民区的充电特征,建立相关模型。文献以某一地区为例,根据状态转移矩阵得到居民区、工商业区电动汽车的数量,研究不同功能区域电动汽车充电负荷的差异性。文献对蒙特卡洛算法的寻优路径优化,完成对电动汽车时间尺度上的负荷预测,提高了运算速度。
文中分析了前人研究电动汽车的充电负荷特性因素的不足之处,对某市工作日与休息日各类型车的实际充电行为数据进行统计分析,包括充电开始时间、充电电量、充电功率的分布特征。采用蒙特卡洛法计算各类型电动汽车的负荷曲线,比较各类型车负荷曲线的差异,分析充电负荷曲线对该市电网负荷的影响。
1影响电动汽车充电负荷特性的因素充电
开始时间、充电持续时间、充电功率是影响电动汽车充电负荷特性的关键因素。下文将针对其进行分析。
1.1开始充电时间
用户的充电开始时间取决于车辆的类型以及用户的个人行为等。之前的研究多是以燃油车的出行特性来近似代替电动汽车的出行特性,例如文献[13]采用NHTS(NationalHouseholdTravelSurvey)的数据,将燃油汽车*后一次出行的结束时刻近似视为开始充电时间t,如式⑴所示,/与其频率满足正态分布,其中儿、久分别为t的期望和标准差。
1.2充电持续时间
充电持续时间Char决定了充电时间的长短,取决于充电电量Q和充电功率P。通过式(2)得到,即:考虑到车型的不同,充电电量Q难以确定,文献[14]研究了交通以及气温状况对充电电量的影响,文献[15]将用户每次用车时的电池电荷状态SOC的概率密度函数(StateofCharge)视为正态分布,通过概率密度函数随机抽取得到SOC,通过式(3)即可得到充电电量Q,其中a为期望充电完成后的荷电状态,一般来说a取为1,E为满电电量。
Q=(.a-SOC)xE(3)文献[16]亦根据NHTS的数据,将日行驶里程L视为满足对数正态分布。通过式(4)得到日行驶里程Z,其中“d"d分别为Ini的期望和标准差
通过式(5),得到充电电量Q。其中s为每公里耗电量,a—般取1。Q=aX.SxL
(5)这些做法由于缺乏实际的电动汽车充电数据,导致将数量庞大的电动汽车难以确定的满电电量E、每公里耗电量S、充电功率P等均视为一个定值,过于理想化的设定会降低模型的精度,使得*终的充电负荷预测结果会有偏差。而文中采用的是处理后的开始充电时间、充电电量,以及充电功率这些实际充电行为数据,更加符合实际状况。
1.3充电功率
充电功率P直接决定了充电持续阶段的负荷情况。文献[17]仅考虑了车辆某一充电倍率下的充电,假设充电功率在某个范围内满足均匀分布,具有一定的局限性。文献采用分段函数来表示充电过程zhonggong率的变化情况,使得结果更加准确,但该模型仅针对镰氢电池,使得*终的充电负荷结果亦具有一定的局限性。
2电动汽车充电行为分析
基于充电行为的差异性,以下针对各类型电动汽车从开始充电时间、充电电量、充电功率进行分析。
2.1公交车
公交车出行规律较为固定。为了更好地比较不同日期各类型车辆充电行为的不同,将开始充电时间、充电电量、充电功率均按照日期进行了分类,将周一到周五记为工作日,周六周日记为休息日。对南方某市电公交车充电站的充电数据,处理后得到电动公交车不同日期的开始充电时间分布图,如图1所示。
可以发现公交车开始充电时间有两个峰值,分别为中午12:00附近和晚上23:00附近,且在23:00附近会达到一天中的*大峰值。由于充电时间不同,充电电量和功率也会不同,因此,将充电电量按照时间进行分类,将白天定义为7:00-17:00,晚上定义为18:00到第二天6:00o得到电动公交车不同日期白天和晚上的充电电量分布情况如图2、图3所示。
对充电电量进行划分,计算订单中的每一段充电电量对应的平均充电功率如表1所示,相较于直接规定以某一充电功率充电,结果会更加jingque。将电动公交车定义为一天一充,其中开始充电时间、充电电量、均按照以上分布规律生成对应的随机数,以此来代替用户不确定的充电行为。
2.2出租车
出租车(包括网约车)同属运营类车辆,近年来发展迅速。同理得到出租车不同日期开始充电时间分布图如图4所示,白天和晚上的充电电量分布图如图5、图6所示。
表1电动公交车不同时间及充电电量下的充电功率
总体来说工作日和休息日出租车的开始充电时间分布近似相同,主要集中在中午12:00~15:00,晚上22:00~1:00,接近凌晨的充电频率略高于中午的充电频率。
同理对充电电量进行分类,每一类的电量,匹配所对应的订单中的平均功率如表2所示,文中将电动出租车的充电频率定为一天两次。
2.3私家车
私家车主要用于上下班,大部分时间处于闲置状态,休息日多用于外出娱乐。对数据处理后得到电动私家车开始充电时间分布图如图7所示,充电电量分布图如图8、图9所示。
图7电动私家车开始充电时间分布
私家车工作日开始充电时间更多的是集中在下班高峰期,约在19:00达到高峰,且晚上充电频率显著高于中午。休息日在午间充电频率整体高于工作日,在8:00~21:00达到一天中的峰值。同理将对充电电量大小进行分类,每一类的电量匹配所对应的订单中的平均功率如表3所示,将电动私家车的充电频率定为一天一次。
3电动汽车充电负荷预测模型
已知该地区2015年~2020年的电动汽车保有量,计算得到该地区电动汽车保有量年均涨幅高达75.26%,对增长趋势进行拟合处理如图10所示,计算得到2021年该地区电动汽车的总保有量。已知该地区某市电动汽车保有量占比,以及公交车、出租车、私家车之前的数量占比,得到2021年该市总保有量为64616辆,其中公交车为2565辆,出租车(包括网约车)为20541辆,私家车为41510辆。
通过上文各类型车充电开始时间、充电电量、充电功率的分布规律以及保有量数据,对南方某市2021年的公交车、出租车、私家车的充电负荷数据采取蒙特卡洛算法进行预测计算。蒙特卡洛算法落旳是在已知某些随机变量大量数据的前提下,通过大量的随机试验,反复抽取随机数,以此来替代电动汽车的随机充电行为,计算变量在试验中出现的频率近似估计其概率值,并将其作为问题的解。
图11为基于蒙特卡洛算法的电动汽车充电负荷预测流程图,通过仿真计算得到公交车、出租车、私家车一天的充电负荷情况。
为了简化计算流程,做出以下假设:
(1)各个类型电动汽车的开始充电时间与充电电量互相独立,彼此互不影响;
(2)充电过程均视为恒功率充电;
(3)区域内的总负荷为独立车辆充电负荷的叠加,
即对同时刻的不同车型充电负荷进行求和。文中将三种类型电动汽车充电负荷曲线的负荷值相加,计算各类型车不同日期类型的负荷占比,以及负荷峰值如表4所示。由于电动出租车充电频率高,保有量较高,无论工作日还是休息日,该市的电动出租车充电负荷占比始终*高,分别为60.42%和5&88%。由于工作日和休息日对电动公交车和电动出租车的荷预测曲线影响较小,文中只列出电动私家车工作日与休息日的负荷曲线对比图12,以及三种电动汽车在工作日的负荷曲线对比图13,发现私家车在休息日中午和凌晨的充电负荷要高于工作日,工作日更多选择在下班高峰期进行充电。
将公交车、出租车、私家车三者的负荷曲线叠加得到图14,可以发现工作日与休息日电动汽车的总的负荷曲线分布规律相似。由于出租车的负荷占比始终*大,导致总体分布曲线类似于出租车的充电负荷曲线。
已知该市2016年冬季典型日负荷曲线如图15中的原负荷曲线所示。并将图14结果叠加到原负荷曲线之上,得到2021年该市电动汽车总负荷曲线与原负荷曲线对比图,如图15所示。并绘制了表5,展示三条曲线负荷峰值、谷值、峰谷差、方差之间的差异,括号内
展示了相较于基础负荷的增长率。表6、表7分别为各类型车开始充电时间、充电电量的概率密度函数拟合公式的具体参数。
从图15以及表5可以看出,电动汽车的充电过程使得电网的整体负荷有了较大的提升,会在晚上19:00达到高峰,约为835.09MW(工作日),830.20MW(休息日),负荷峰值分别提高了7.79%(工作日),7.16%(休息日)。相对来说,在夜间负荷谷值的提升更为明显,分别提高10.70%,11.12%,利用这一特性后续可以采用V2G[27-30]等有序充电控制技术,将电动汽车作为一个独立的储能单元与电网进行有效的交互调度,在满足用户充电需求的前提下,提高发电设备在夜间的利用率,实现削峰填谷,保证电网的安全稳定运行。负荷峰谷差由原来的366.99MW提高至383.70MW(工作日)、377.10MW(休息日)分别提高4.55%,2.75%。而负荷的波动情况一般用方差来表示,负荷方差分别提高9.62%(工作日),7.94%(休息日),也表明电动汽车的引入加剧了电网的不稳定波动。
文中将各类型电动汽车的开始充电时间以及充电电量通过Matlab进行拟合处理,筛选B2>0.95的函数,其中疋表示复相关系数,其越接近1,表示拟合效果越好。发现除了私家车在工作日与休息日,开始充电时间的概率密度函数用高阶傅里叶函数(如式6)拟合效果较好以外,其余均通过一阶或多阶高斯分布函数(如式7)完成拟合。同时采用*小二乘法估计公式的各项参数,结果如表6与表7所示,其中%表示开始充电时间或是充电电量,/(%)表示与之对应的概率密度。通过对充电行为进行函数拟合,旨在得到一种更加普遍且实际的概率模型,为今后的研究提供帮助。
- 智慧照明控制系统在污水处理厂的应用 2025-02-01
- 事关光伏储能—国家能源局发布:2025年能源监管重点! 2025-02-01
- 如何降低由电气故障引发的火灾 2025-02-01
- 【新闻直击】重磅:上海2025年独立储能电站申报开启 2025-02-01
- 【解决方案】安科瑞无线测温产品助力半导体工厂安全运行 2025-02-01
- AcrelEMS-HIM高速公路综合能效系统在广西大凭高速公路大新经龙州至凭祥段项目的应用 2025-02-01
- 双碳能源技术和光储充一体系统分析 2025-02-01
- 智能照明控制系统在航站楼中的应用 2025-02-01
- 安科瑞企业能源管控系统对于企业节能管理的助力 2025-02-01
- 智慧医院智能化系统设计 2025-02-01
- 浅谈关于考虑新能源消纳的电动汽车有序充电策略的研究综述 2025-02-01
- 浅谈智能化背景下用能单位能耗监测与管理系统设计研究 2025-02-01
- 浅谈安科瑞分时电价背景下光伏出力园区电动汽车的有序充电策略 2025-02-01
- 浅谈分时电价背景下光伏出力园区电动汽车的有序充电策略 2025-02-01
- 新能源汽车充电桩选型以及安装应用 2025-02-01
联系方式
- 联系电话:未提供
- 联系人:程瑜
- 手 机:18702112087
- 微 信:18702112087